This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limuni3 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → Lim ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limeq | ⊢ ( 𝑥 = 𝑧 → ( Lim 𝑥 ↔ Lim 𝑧 ) ) | |
| 2 | 1 | rspcv | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → Lim 𝑧 ) ) |
| 3 | vex | ⊢ 𝑧 ∈ V | |
| 4 | limelon | ⊢ ( ( 𝑧 ∈ V ∧ Lim 𝑧 ) → 𝑧 ∈ On ) | |
| 5 | 3 4 | mpan | ⊢ ( Lim 𝑧 → 𝑧 ∈ On ) |
| 6 | 2 5 | syl6com | ⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ On ) ) |
| 7 | 6 | ssrdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → 𝐴 ⊆ On ) |
| 8 | ssorduni | ⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) | |
| 9 | 7 8 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → Ord ∪ 𝐴 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → Ord ∪ 𝐴 ) |
| 11 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 12 | 0ellim | ⊢ ( Lim 𝑧 → ∅ ∈ 𝑧 ) | |
| 13 | elunii | ⊢ ( ( ∅ ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → ∅ ∈ ∪ 𝐴 ) | |
| 14 | 13 | expcom | ⊢ ( 𝑧 ∈ 𝐴 → ( ∅ ∈ 𝑧 → ∅ ∈ ∪ 𝐴 ) ) |
| 15 | 12 14 | syl5 | ⊢ ( 𝑧 ∈ 𝐴 → ( Lim 𝑧 → ∅ ∈ ∪ 𝐴 ) ) |
| 16 | 2 15 | syld | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ∅ ∈ ∪ 𝐴 ) ) |
| 17 | 16 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ∅ ∈ ∪ 𝐴 ) ) |
| 18 | 11 17 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ∅ ∈ ∪ 𝐴 ) ) |
| 19 | 18 | imp | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → ∅ ∈ ∪ 𝐴 ) |
| 20 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) | |
| 21 | 1 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( 𝑧 ∈ 𝐴 → Lim 𝑧 ) ) |
| 22 | limsuc | ⊢ ( Lim 𝑧 → ( 𝑦 ∈ 𝑧 ↔ suc 𝑦 ∈ 𝑧 ) ) | |
| 23 | 22 | anbi1d | ⊢ ( Lim 𝑧 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ↔ ( suc 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 24 | elunii | ⊢ ( ( suc 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → suc 𝑦 ∈ ∪ 𝐴 ) | |
| 25 | 23 24 | biimtrdi | ⊢ ( Lim 𝑧 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → suc 𝑦 ∈ ∪ 𝐴 ) ) |
| 26 | 25 | expd | ⊢ ( Lim 𝑧 → ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝐴 → suc 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 27 | 26 | com3r | ⊢ ( 𝑧 ∈ 𝐴 → ( Lim 𝑧 → ( 𝑦 ∈ 𝑧 → suc 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 28 | 21 27 | sylcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( 𝑧 ∈ 𝐴 → ( 𝑦 ∈ 𝑧 → suc 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 29 | 28 | rexlimdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 → suc 𝑦 ∈ ∪ 𝐴 ) ) |
| 30 | 20 29 | biimtrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( 𝑦 ∈ ∪ 𝐴 → suc 𝑦 ∈ ∪ 𝐴 ) ) |
| 31 | 30 | ralrimiv | ⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ∀ 𝑦 ∈ ∪ 𝐴 suc 𝑦 ∈ ∪ 𝐴 ) |
| 32 | 31 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → ∀ 𝑦 ∈ ∪ 𝐴 suc 𝑦 ∈ ∪ 𝐴 ) |
| 33 | dflim4 | ⊢ ( Lim ∪ 𝐴 ↔ ( Ord ∪ 𝐴 ∧ ∅ ∈ ∪ 𝐴 ∧ ∀ 𝑦 ∈ ∪ 𝐴 suc 𝑦 ∈ ∪ 𝐴 ) ) | |
| 34 | 10 19 32 33 | syl3anbrc | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → Lim ∪ 𝐴 ) |