This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsuc2 | |- ( ( Ord A /\ A = U. A ) -> ( B e. A <-> suc B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordunisuc2 | |- ( Ord A -> ( A = U. A <-> A. x e. A suc x e. A ) ) |
|
| 2 | 1 | biimpa | |- ( ( Ord A /\ A = U. A ) -> A. x e. A suc x e. A ) |
| 3 | suceq | |- ( x = B -> suc x = suc B ) |
|
| 4 | 3 | eleq1d | |- ( x = B -> ( suc x e. A <-> suc B e. A ) ) |
| 5 | 4 | rspccva | |- ( ( A. x e. A suc x e. A /\ B e. A ) -> suc B e. A ) |
| 6 | 2 5 | sylan | |- ( ( ( Ord A /\ A = U. A ) /\ B e. A ) -> suc B e. A ) |
| 7 | 6 | ex | |- ( ( Ord A /\ A = U. A ) -> ( B e. A -> suc B e. A ) ) |
| 8 | ordtr | |- ( Ord A -> Tr A ) |
|
| 9 | trsuc | |- ( ( Tr A /\ suc B e. A ) -> B e. A ) |
|
| 10 | 9 | ex | |- ( Tr A -> ( suc B e. A -> B e. A ) ) |
| 11 | 8 10 | syl | |- ( Ord A -> ( suc B e. A -> B e. A ) ) |
| 12 | 11 | adantr | |- ( ( Ord A /\ A = U. A ) -> ( suc B e. A -> B e. A ) ) |
| 13 | 7 12 | impbid | |- ( ( Ord A /\ A = U. A ) -> ( B e. A <-> suc B e. A ) ) |