This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is not a limit point of the domain of the function F , then every point is a limit of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limccl.f | |- ( ph -> F : A --> CC ) |
|
| limccl.a | |- ( ph -> A C_ CC ) |
||
| limccl.b | |- ( ph -> B e. CC ) |
||
| ellimc2.k | |- K = ( TopOpen ` CCfld ) |
||
| limcnlp.n | |- ( ph -> -. B e. ( ( limPt ` K ) ` A ) ) |
||
| Assertion | limcnlp | |- ( ph -> ( F limCC B ) = CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccl.f | |- ( ph -> F : A --> CC ) |
|
| 2 | limccl.a | |- ( ph -> A C_ CC ) |
|
| 3 | limccl.b | |- ( ph -> B e. CC ) |
|
| 4 | ellimc2.k | |- K = ( TopOpen ` CCfld ) |
|
| 5 | limcnlp.n | |- ( ph -> -. B e. ( ( limPt ` K ) ` A ) ) |
|
| 6 | 1 2 3 4 | ellimc2 | |- ( ph -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. v e. K ( B e. v /\ ( F " ( v i^i ( A \ { B } ) ) ) C_ u ) ) ) ) ) |
| 7 | 4 | cnfldtop | |- K e. Top |
| 8 | 2 | adantr | |- ( ( ph /\ x e. CC ) -> A C_ CC ) |
| 9 | 8 | ssdifssd | |- ( ( ph /\ x e. CC ) -> ( A \ { B } ) C_ CC ) |
| 10 | 4 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 11 | 10 | toponunii | |- CC = U. K |
| 12 | 11 | clscld | |- ( ( K e. Top /\ ( A \ { B } ) C_ CC ) -> ( ( cls ` K ) ` ( A \ { B } ) ) e. ( Clsd ` K ) ) |
| 13 | 7 9 12 | sylancr | |- ( ( ph /\ x e. CC ) -> ( ( cls ` K ) ` ( A \ { B } ) ) e. ( Clsd ` K ) ) |
| 14 | 11 | cldopn | |- ( ( ( cls ` K ) ` ( A \ { B } ) ) e. ( Clsd ` K ) -> ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) e. K ) |
| 15 | 13 14 | syl | |- ( ( ph /\ x e. CC ) -> ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) e. K ) |
| 16 | 11 | islp | |- ( ( K e. Top /\ A C_ CC ) -> ( B e. ( ( limPt ` K ) ` A ) <-> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) ) |
| 17 | 7 2 16 | sylancr | |- ( ph -> ( B e. ( ( limPt ` K ) ` A ) <-> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) ) |
| 18 | 5 17 | mtbid | |- ( ph -> -. B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) |
| 19 | 3 18 | eldifd | |- ( ph -> B e. ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ x e. CC ) -> B e. ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) ) |
| 21 | difin2 | |- ( ( A \ { B } ) C_ CC -> ( ( A \ { B } ) \ ( ( cls ` K ) ` ( A \ { B } ) ) ) = ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) |
|
| 22 | 9 21 | syl | |- ( ( ph /\ x e. CC ) -> ( ( A \ { B } ) \ ( ( cls ` K ) ` ( A \ { B } ) ) ) = ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) |
| 23 | 11 | sscls | |- ( ( K e. Top /\ ( A \ { B } ) C_ CC ) -> ( A \ { B } ) C_ ( ( cls ` K ) ` ( A \ { B } ) ) ) |
| 24 | 7 9 23 | sylancr | |- ( ( ph /\ x e. CC ) -> ( A \ { B } ) C_ ( ( cls ` K ) ` ( A \ { B } ) ) ) |
| 25 | ssdif0 | |- ( ( A \ { B } ) C_ ( ( cls ` K ) ` ( A \ { B } ) ) <-> ( ( A \ { B } ) \ ( ( cls ` K ) ` ( A \ { B } ) ) ) = (/) ) |
|
| 26 | 24 25 | sylib | |- ( ( ph /\ x e. CC ) -> ( ( A \ { B } ) \ ( ( cls ` K ) ` ( A \ { B } ) ) ) = (/) ) |
| 27 | 22 26 | eqtr3d | |- ( ( ph /\ x e. CC ) -> ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) = (/) ) |
| 28 | 27 | imaeq2d | |- ( ( ph /\ x e. CC ) -> ( F " ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) = ( F " (/) ) ) |
| 29 | ima0 | |- ( F " (/) ) = (/) |
|
| 30 | 28 29 | eqtrdi | |- ( ( ph /\ x e. CC ) -> ( F " ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) = (/) ) |
| 31 | 0ss | |- (/) C_ u |
|
| 32 | 30 31 | eqsstrdi | |- ( ( ph /\ x e. CC ) -> ( F " ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) C_ u ) |
| 33 | eleq2 | |- ( v = ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) -> ( B e. v <-> B e. ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) ) ) |
|
| 34 | ineq1 | |- ( v = ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) -> ( v i^i ( A \ { B } ) ) = ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) |
|
| 35 | 34 | imaeq2d | |- ( v = ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) -> ( F " ( v i^i ( A \ { B } ) ) ) = ( F " ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) ) |
| 36 | 35 | sseq1d | |- ( v = ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) -> ( ( F " ( v i^i ( A \ { B } ) ) ) C_ u <-> ( F " ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) C_ u ) ) |
| 37 | 33 36 | anbi12d | |- ( v = ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) -> ( ( B e. v /\ ( F " ( v i^i ( A \ { B } ) ) ) C_ u ) <-> ( B e. ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) /\ ( F " ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) C_ u ) ) ) |
| 38 | 37 | rspcev | |- ( ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) e. K /\ ( B e. ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) /\ ( F " ( ( CC \ ( ( cls ` K ) ` ( A \ { B } ) ) ) i^i ( A \ { B } ) ) ) C_ u ) ) -> E. v e. K ( B e. v /\ ( F " ( v i^i ( A \ { B } ) ) ) C_ u ) ) |
| 39 | 15 20 32 38 | syl12anc | |- ( ( ph /\ x e. CC ) -> E. v e. K ( B e. v /\ ( F " ( v i^i ( A \ { B } ) ) ) C_ u ) ) |
| 40 | 39 | a1d | |- ( ( ph /\ x e. CC ) -> ( x e. u -> E. v e. K ( B e. v /\ ( F " ( v i^i ( A \ { B } ) ) ) C_ u ) ) ) |
| 41 | 40 | ralrimivw | |- ( ( ph /\ x e. CC ) -> A. u e. K ( x e. u -> E. v e. K ( B e. v /\ ( F " ( v i^i ( A \ { B } ) ) ) C_ u ) ) ) |
| 42 | 41 | ex | |- ( ph -> ( x e. CC -> A. u e. K ( x e. u -> E. v e. K ( B e. v /\ ( F " ( v i^i ( A \ { B } ) ) ) C_ u ) ) ) ) |
| 43 | 42 | pm4.71d | |- ( ph -> ( x e. CC <-> ( x e. CC /\ A. u e. K ( x e. u -> E. v e. K ( B e. v /\ ( F " ( v i^i ( A \ { B } ) ) ) C_ u ) ) ) ) ) |
| 44 | 6 43 | bitr4d | |- ( ph -> ( x e. ( F limCC B ) <-> x e. CC ) ) |
| 45 | 44 | eqrdv | |- ( ph -> ( F limCC B ) = CC ) |