This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcdm0.f | |- ( ph -> F : (/) --> CC ) |
|
| limcdm0.b | |- ( ph -> B e. CC ) |
||
| Assertion | limcdm0 | |- ( ph -> ( F limCC B ) = CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcdm0.f | |- ( ph -> F : (/) --> CC ) |
|
| 2 | limcdm0.b | |- ( ph -> B e. CC ) |
|
| 3 | limccl | |- ( F limCC B ) C_ CC |
|
| 4 | 3 | sseli | |- ( x e. ( F limCC B ) -> x e. CC ) |
| 5 | 4 | adantl | |- ( ( ph /\ x e. ( F limCC B ) ) -> x e. CC ) |
| 6 | simpr | |- ( ( ph /\ x e. CC ) -> x e. CC ) |
|
| 7 | 1rp | |- 1 e. RR+ |
|
| 8 | ral0 | |- A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < 1 ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) |
|
| 9 | brimralrspcev | |- ( ( 1 e. RR+ /\ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < 1 ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) ) -> E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) ) |
|
| 10 | 7 8 9 | mp2an | |- E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) |
| 11 | 10 | rgenw | |- A. y e. RR+ E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) |
| 12 | 11 | a1i | |- ( ( ph /\ x e. CC ) -> A. y e. RR+ E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) ) |
| 13 | 1 | adantr | |- ( ( ph /\ x e. CC ) -> F : (/) --> CC ) |
| 14 | 0ss | |- (/) C_ CC |
|
| 15 | 14 | a1i | |- ( ( ph /\ x e. CC ) -> (/) C_ CC ) |
| 16 | 2 | adantr | |- ( ( ph /\ x e. CC ) -> B e. CC ) |
| 17 | 13 15 16 | ellimc3 | |- ( ( ph /\ x e. CC ) -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) ) ) ) |
| 18 | 6 12 17 | mpbir2and | |- ( ( ph /\ x e. CC ) -> x e. ( F limCC B ) ) |
| 19 | 5 18 | impbida | |- ( ph -> ( x e. ( F limCC B ) <-> x e. CC ) ) |
| 20 | 19 | eqrdv | |- ( ph -> ( F limCC B ) = CC ) |