This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a left and right identity element for any binary operation (group operation) .+ , the left identity element (and therefore also the right identity element according to lidrideqd ) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidrideqd.l | ⊢ ( 𝜑 → 𝐿 ∈ 𝐵 ) | |
| lidrideqd.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐵 ) | ||
| lidrideqd.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝐿 + 𝑥 ) = 𝑥 ) | ||
| lidrideqd.ri | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 ) | ||
| lidrideqd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| lidrideqd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| lidrididd.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | lidrididd | ⊢ ( 𝜑 → 𝐿 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidrideqd.l | ⊢ ( 𝜑 → 𝐿 ∈ 𝐵 ) | |
| 2 | lidrideqd.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐵 ) | |
| 3 | lidrideqd.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝐿 + 𝑥 ) = 𝑥 ) | |
| 4 | lidrideqd.ri | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 ) | |
| 5 | lidrideqd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 6 | lidrideqd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 7 | lidrididd.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐿 + 𝑥 ) = ( 𝐿 + 𝑦 ) ) | |
| 9 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐿 + 𝑥 ) = 𝑥 ↔ ( 𝐿 + 𝑦 ) = 𝑦 ) ) |
| 11 | 10 | rspcv | ⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐿 + 𝑥 ) = 𝑥 → ( 𝐿 + 𝑦 ) = 𝑦 ) ) |
| 12 | 3 11 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐿 + 𝑦 ) = 𝑦 ) |
| 13 | 1 2 3 4 | lidrideqd | ⊢ ( 𝜑 → 𝐿 = 𝑅 ) |
| 14 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑅 ) = ( 𝑦 + 𝑅 ) ) | |
| 15 | 14 9 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + 𝑅 ) = 𝑥 ↔ ( 𝑦 + 𝑅 ) = 𝑦 ) ) |
| 16 | 15 | rspcv | ⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝑦 + 𝑅 ) = 𝑦 ) ) |
| 17 | oveq2 | ⊢ ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = ( 𝑦 + 𝑅 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑦 + 𝑅 ) = 𝑦 ∧ 𝐿 = 𝑅 ) → ( 𝑦 + 𝐿 ) = ( 𝑦 + 𝑅 ) ) |
| 19 | simpl | ⊢ ( ( ( 𝑦 + 𝑅 ) = 𝑦 ∧ 𝐿 = 𝑅 ) → ( 𝑦 + 𝑅 ) = 𝑦 ) | |
| 20 | 18 19 | eqtrd | ⊢ ( ( ( 𝑦 + 𝑅 ) = 𝑦 ∧ 𝐿 = 𝑅 ) → ( 𝑦 + 𝐿 ) = 𝑦 ) |
| 21 | 20 | ex | ⊢ ( ( 𝑦 + 𝑅 ) = 𝑦 → ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) |
| 22 | 16 21 | syl6com | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝑦 ∈ 𝐵 → ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) ) |
| 23 | 22 | com23 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝐿 = 𝑅 → ( 𝑦 ∈ 𝐵 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) ) |
| 24 | 4 13 23 | sylc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 + 𝐿 ) = 𝑦 ) |
| 26 | 5 7 6 1 12 25 | ismgmid2 | ⊢ ( 𝜑 → 𝐿 = 0 ) |