This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a left and right identity element for any binary operation (group operation) .+ , the left identity element (and therefore also the right identity element according to lidrideqd ) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidrideqd.l | |- ( ph -> L e. B ) |
|
| lidrideqd.r | |- ( ph -> R e. B ) |
||
| lidrideqd.li | |- ( ph -> A. x e. B ( L .+ x ) = x ) |
||
| lidrideqd.ri | |- ( ph -> A. x e. B ( x .+ R ) = x ) |
||
| lidrideqd.b | |- B = ( Base ` G ) |
||
| lidrideqd.p | |- .+ = ( +g ` G ) |
||
| lidrididd.o | |- .0. = ( 0g ` G ) |
||
| Assertion | lidrididd | |- ( ph -> L = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidrideqd.l | |- ( ph -> L e. B ) |
|
| 2 | lidrideqd.r | |- ( ph -> R e. B ) |
|
| 3 | lidrideqd.li | |- ( ph -> A. x e. B ( L .+ x ) = x ) |
|
| 4 | lidrideqd.ri | |- ( ph -> A. x e. B ( x .+ R ) = x ) |
|
| 5 | lidrideqd.b | |- B = ( Base ` G ) |
|
| 6 | lidrideqd.p | |- .+ = ( +g ` G ) |
|
| 7 | lidrididd.o | |- .0. = ( 0g ` G ) |
|
| 8 | oveq2 | |- ( x = y -> ( L .+ x ) = ( L .+ y ) ) |
|
| 9 | id | |- ( x = y -> x = y ) |
|
| 10 | 8 9 | eqeq12d | |- ( x = y -> ( ( L .+ x ) = x <-> ( L .+ y ) = y ) ) |
| 11 | 10 | rspcv | |- ( y e. B -> ( A. x e. B ( L .+ x ) = x -> ( L .+ y ) = y ) ) |
| 12 | 3 11 | mpan9 | |- ( ( ph /\ y e. B ) -> ( L .+ y ) = y ) |
| 13 | 1 2 3 4 | lidrideqd | |- ( ph -> L = R ) |
| 14 | oveq1 | |- ( x = y -> ( x .+ R ) = ( y .+ R ) ) |
|
| 15 | 14 9 | eqeq12d | |- ( x = y -> ( ( x .+ R ) = x <-> ( y .+ R ) = y ) ) |
| 16 | 15 | rspcv | |- ( y e. B -> ( A. x e. B ( x .+ R ) = x -> ( y .+ R ) = y ) ) |
| 17 | oveq2 | |- ( L = R -> ( y .+ L ) = ( y .+ R ) ) |
|
| 18 | 17 | adantl | |- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ L ) = ( y .+ R ) ) |
| 19 | simpl | |- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ R ) = y ) |
|
| 20 | 18 19 | eqtrd | |- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ L ) = y ) |
| 21 | 20 | ex | |- ( ( y .+ R ) = y -> ( L = R -> ( y .+ L ) = y ) ) |
| 22 | 16 21 | syl6com | |- ( A. x e. B ( x .+ R ) = x -> ( y e. B -> ( L = R -> ( y .+ L ) = y ) ) ) |
| 23 | 22 | com23 | |- ( A. x e. B ( x .+ R ) = x -> ( L = R -> ( y e. B -> ( y .+ L ) = y ) ) ) |
| 24 | 4 13 23 | sylc | |- ( ph -> ( y e. B -> ( y .+ L ) = y ) ) |
| 25 | 24 | imp | |- ( ( ph /\ y e. B ) -> ( y .+ L ) = y ) |
| 26 | 5 7 6 1 12 25 | ismgmid2 | |- ( ph -> L = .0. ) |