This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof for lidl0 not using rnglidl0 : Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| rnglidl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | lidl0ALT | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | rnglidl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 4 | rlm0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 5 | 2 4 | eqtri | ⊢ 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 6 | eqid | ⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 7 | 5 6 | lsssn0 | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → { 0 } ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 9 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 10 | 1 9 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 | 8 10 | eleqtrrdi | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |