This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof for lidl0 not using rnglidl0 : Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
| rnglidl0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | lidl0ALT | |- ( R e. Ring -> { .0. } e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
| 2 | rnglidl0.z | |- .0. = ( 0g ` R ) |
|
| 3 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 4 | rlm0 | |- ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) |
|
| 5 | 2 4 | eqtri | |- .0. = ( 0g ` ( ringLMod ` R ) ) |
| 6 | eqid | |- ( LSubSp ` ( ringLMod ` R ) ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 7 | 5 6 | lsssn0 | |- ( ( ringLMod ` R ) e. LMod -> { .0. } e. ( LSubSp ` ( ringLMod ` R ) ) ) |
| 8 | 3 7 | syl | |- ( R e. Ring -> { .0. } e. ( LSubSp ` ( ringLMod ` R ) ) ) |
| 9 | lidlval | |- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 10 | 1 9 | eqtri | |- U = ( LSubSp ` ( ringLMod ` R ) ) |
| 11 | 8 10 | eleqtrrdi | |- ( R e. Ring -> { .0. } e. U ) |