This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfuhgrnloopv.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 | ||
| lfuhgrnloopv.e | ⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | ||
| Assertion | lfgredgge2 | ⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑋 ∈ 𝐴 ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgrnloopv.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 | |
| 3 | lfuhgrnloopv.e | ⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | |
| 4 | eqid | ⊢ 𝐴 = 𝐴 | |
| 5 | 4 3 | feq23i | ⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 ↔ 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 6 | 5 | biimpi | ⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 8 | fveq2 | ⊢ ( 𝑦 = ( 𝐼 ‘ 𝑋 ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑦 = ( 𝐼 ‘ 𝑋 ) → ( 2 ≤ ( ♯ ‘ 𝑦 ) ↔ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ ( ♯ ‘ 𝑦 ) ) ) |
| 12 | 11 | cbvrabv | ⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑦 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑦 ) } |
| 13 | 9 12 | elrab2 | ⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 14 | 13 | simprbi | ⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) |
| 15 | 7 14 | syl | ⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑋 ∈ 𝐴 ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) |