This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfuhgrnloopv.i | |- I = ( iEdg ` G ) |
|
| lfuhgrnloopv.a | |- A = dom I |
||
| lfuhgrnloopv.e | |- E = { x e. ~P V | 2 <_ ( # ` x ) } |
||
| Assertion | lfgrnloop | |- ( I : A --> E -> { x e. A | ( I ` x ) = { U } } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgrnloopv.i | |- I = ( iEdg ` G ) |
|
| 2 | lfuhgrnloopv.a | |- A = dom I |
|
| 3 | lfuhgrnloopv.e | |- E = { x e. ~P V | 2 <_ ( # ` x ) } |
|
| 4 | nfcv | |- F/_ x I |
|
| 5 | nfcv | |- F/_ x A |
|
| 6 | nfrab1 | |- F/_ x { x e. ~P V | 2 <_ ( # ` x ) } |
|
| 7 | 3 6 | nfcxfr | |- F/_ x E |
| 8 | 4 5 7 | nff | |- F/ x I : A --> E |
| 9 | hashsn01 | |- ( ( # ` { U } ) = 0 \/ ( # ` { U } ) = 1 ) |
|
| 10 | 2pos | |- 0 < 2 |
|
| 11 | 0re | |- 0 e. RR |
|
| 12 | 2re | |- 2 e. RR |
|
| 13 | 11 12 | ltnlei | |- ( 0 < 2 <-> -. 2 <_ 0 ) |
| 14 | 10 13 | mpbi | |- -. 2 <_ 0 |
| 15 | breq2 | |- ( ( # ` { U } ) = 0 -> ( 2 <_ ( # ` { U } ) <-> 2 <_ 0 ) ) |
|
| 16 | 14 15 | mtbiri | |- ( ( # ` { U } ) = 0 -> -. 2 <_ ( # ` { U } ) ) |
| 17 | 1lt2 | |- 1 < 2 |
|
| 18 | 1re | |- 1 e. RR |
|
| 19 | 18 12 | ltnlei | |- ( 1 < 2 <-> -. 2 <_ 1 ) |
| 20 | 17 19 | mpbi | |- -. 2 <_ 1 |
| 21 | breq2 | |- ( ( # ` { U } ) = 1 -> ( 2 <_ ( # ` { U } ) <-> 2 <_ 1 ) ) |
|
| 22 | 20 21 | mtbiri | |- ( ( # ` { U } ) = 1 -> -. 2 <_ ( # ` { U } ) ) |
| 23 | 16 22 | jaoi | |- ( ( ( # ` { U } ) = 0 \/ ( # ` { U } ) = 1 ) -> -. 2 <_ ( # ` { U } ) ) |
| 24 | 9 23 | ax-mp | |- -. 2 <_ ( # ` { U } ) |
| 25 | fveq2 | |- ( ( I ` x ) = { U } -> ( # ` ( I ` x ) ) = ( # ` { U } ) ) |
|
| 26 | 25 | breq2d | |- ( ( I ` x ) = { U } -> ( 2 <_ ( # ` ( I ` x ) ) <-> 2 <_ ( # ` { U } ) ) ) |
| 27 | 24 26 | mtbiri | |- ( ( I ` x ) = { U } -> -. 2 <_ ( # ` ( I ` x ) ) ) |
| 28 | 1 2 3 | lfgredgge2 | |- ( ( I : A --> E /\ x e. A ) -> 2 <_ ( # ` ( I ` x ) ) ) |
| 29 | 27 28 | nsyl3 | |- ( ( I : A --> E /\ x e. A ) -> -. ( I ` x ) = { U } ) |
| 30 | 29 | ex | |- ( I : A --> E -> ( x e. A -> -. ( I ` x ) = { U } ) ) |
| 31 | 8 30 | ralrimi | |- ( I : A --> E -> A. x e. A -. ( I ` x ) = { U } ) |
| 32 | rabeq0 | |- ( { x e. A | ( I ` x ) = { U } } = (/) <-> A. x e. A -. ( I ` x ) = { U } ) |
|
| 33 | 31 32 | sylibr | |- ( I : A --> E -> { x e. A | ( I ` x ) = { U } } = (/) ) |