This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leltadd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltleadd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐵 < 𝐷 ∧ 𝐴 ≤ 𝐶 ) → ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) | |
| 2 | 1 | ancomsd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
| 3 | 2 | ancom2s | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
| 4 | 3 | ancom1s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
| 5 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 6 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 7 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 9 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 10 | recn | ⊢ ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ ) | |
| 11 | addcom | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 13 | 8 12 | breqan12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ↔ ( 𝐵 + 𝐴 ) < ( 𝐷 + 𝐶 ) ) ) |
| 14 | 4 13 | sylibrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) |