This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divle1le | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 2 | rpregt0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | 0lt1 | ⊢ 0 < 1 | |
| 6 | 4 5 | pm3.2i | ⊢ ( 1 ∈ ℝ ∧ 0 < 1 ) |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
| 8 | lediv23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ ( 𝐴 / 1 ) ≤ 𝐵 ) ) | |
| 9 | 1 3 7 8 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ ( 𝐴 / 1 ) ≤ 𝐵 ) ) |
| 10 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 11 | 10 | div1d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 1 ) = 𝐴 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 1 ) = 𝐴 ) |
| 13 | 12 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 1 ) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵 ) ) |
| 14 | 9 13 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ 𝐵 ) ) |