This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| ltdiv2d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ledivdivd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) | ||
| ledivdivd.5 | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ) | ||
| Assertion | ledivdivd | ⊢ ( 𝜑 → ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 2 | rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | ltdiv2d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | ledivdivd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) | |
| 5 | ledivdivd.5 | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ) | |
| 6 | 1 | rpregt0d | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 7 | 2 | rpregt0d | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 8 | 3 | rpregt0d | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
| 9 | 4 | rpregt0d | ⊢ ( 𝜑 → ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) |
| 10 | ledivdiv | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) | |
| 11 | 6 7 8 9 10 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) |
| 12 | 5 11 | mpbid | ⊢ ( 𝜑 → ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) |