This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| rpaddcld.1 | |- ( ph -> B e. RR+ ) |
||
| ltdiv2d.3 | |- ( ph -> C e. RR+ ) |
||
| ledivdivd.4 | |- ( ph -> D e. RR+ ) |
||
| ledivdivd.5 | |- ( ph -> ( A / B ) <_ ( C / D ) ) |
||
| Assertion | ledivdivd | |- ( ph -> ( D / C ) <_ ( B / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | rpaddcld.1 | |- ( ph -> B e. RR+ ) |
|
| 3 | ltdiv2d.3 | |- ( ph -> C e. RR+ ) |
|
| 4 | ledivdivd.4 | |- ( ph -> D e. RR+ ) |
|
| 5 | ledivdivd.5 | |- ( ph -> ( A / B ) <_ ( C / D ) ) |
|
| 6 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
| 7 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
| 8 | 3 | rpregt0d | |- ( ph -> ( C e. RR /\ 0 < C ) ) |
| 9 | 4 | rpregt0d | |- ( ph -> ( D e. RR /\ 0 < D ) ) |
| 10 | ledivdiv | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( D / C ) <_ ( B / A ) ) ) |
|
| 11 | 6 7 8 9 10 | syl22anc | |- ( ph -> ( ( A / B ) <_ ( C / D ) <-> ( D / C ) <_ ( B / A ) ) ) |
| 12 | 5 11 | mpbid | |- ( ph -> ( D / C ) <_ ( B / A ) ) |