This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of 2 , 3 and 4 is 12. (Contributed by AV, 27-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmf2a3a4e12 | ⊢ ( lcm ‘ { 2 , 3 , 4 } ) = ; 1 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | ⊢ 2 ∈ ℤ | |
| 2 | 3z | ⊢ 3 ∈ ℤ | |
| 3 | 4z | ⊢ 4 ∈ ℤ | |
| 4 | lcmftp | ⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( lcm ‘ { 2 , 3 , 4 } ) = ( ( 2 lcm 3 ) lcm 4 ) ) | |
| 5 | lcmcom | ⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 2 lcm 3 ) = ( 3 lcm 2 ) ) | |
| 6 | 5 | 3adant3 | ⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 2 lcm 3 ) = ( 3 lcm 2 ) ) |
| 7 | 3lcm2e6woprm | ⊢ ( 3 lcm 2 ) = 6 | |
| 8 | 6 7 | eqtrdi | ⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 2 lcm 3 ) = 6 ) |
| 9 | 8 | oveq1d | ⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( ( 2 lcm 3 ) lcm 4 ) = ( 6 lcm 4 ) ) |
| 10 | 6lcm4e12 | ⊢ ( 6 lcm 4 ) = ; 1 2 | |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( ( 2 lcm 3 ) lcm 4 ) = ; 1 2 ) |
| 12 | 4 11 | eqtrd | ⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( lcm ‘ { 2 , 3 , 4 } ) = ; 1 2 ) |
| 13 | 1 2 3 12 | mp3an | ⊢ ( lcm ‘ { 2 , 3 , 4 } ) = ; 1 2 |