This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of all positive integers less than or equal to an integer is less than or equal to the factorial of the integer. (Contributed by AV, 16-Aug-2020) (Revised by AV, 27-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmflefac | ⊢ ( 𝑁 ∈ ℕ → ( lcm ‘ ( 1 ... 𝑁 ) ) ≤ ( ! ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzssz | ⊢ ( 1 ... 𝑁 ) ⊆ ℤ | |
| 2 | 1 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ⊆ ℤ ) |
| 3 | fzfid | ⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 4 | 0nelfz1 | ⊢ 0 ∉ ( 1 ... 𝑁 ) | |
| 5 | 4 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 ∉ ( 1 ... 𝑁 ) ) |
| 6 | 2 3 5 | 3jca | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑁 ) ) ) |
| 7 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 8 | 7 | faccld | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 9 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → 𝑚 ∈ ℕ ) | |
| 10 | elfzuz3 | ⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 12 | dvdsfac | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑚 ∥ ( ! ‘ 𝑁 ) ) | |
| 13 | 9 11 12 | syl2an2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑚 ∥ ( ! ‘ 𝑁 ) ) |
| 14 | 13 | ralrimiva | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑚 ∈ ( 1 ... 𝑁 ) 𝑚 ∥ ( ! ‘ 𝑁 ) ) |
| 15 | 8 14 | jca | ⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) 𝑚 ∥ ( ! ‘ 𝑁 ) ) ) |
| 16 | lcmfledvds | ⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) 𝑚 ∥ ( ! ‘ 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ≤ ( ! ‘ 𝑁 ) ) ) | |
| 17 | 6 15 16 | sylc | ⊢ ( 𝑁 ∈ ℕ → ( lcm ‘ ( 1 ... 𝑁 ) ) ≤ ( ! ‘ 𝑁 ) ) |