This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcm1 | |- ( M e. ZZ -> ( M lcm 1 ) = ( abs ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcd1 | |- ( M e. ZZ -> ( M gcd 1 ) = 1 ) |
|
| 2 | 1 | oveq2d | |- ( M e. ZZ -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( ( M lcm 1 ) x. 1 ) ) |
| 3 | 1z | |- 1 e. ZZ |
|
| 4 | lcmcl | |- ( ( M e. ZZ /\ 1 e. ZZ ) -> ( M lcm 1 ) e. NN0 ) |
|
| 5 | 3 4 | mpan2 | |- ( M e. ZZ -> ( M lcm 1 ) e. NN0 ) |
| 6 | 5 | nn0cnd | |- ( M e. ZZ -> ( M lcm 1 ) e. CC ) |
| 7 | 6 | mulridd | |- ( M e. ZZ -> ( ( M lcm 1 ) x. 1 ) = ( M lcm 1 ) ) |
| 8 | 2 7 | eqtr2d | |- ( M e. ZZ -> ( M lcm 1 ) = ( ( M lcm 1 ) x. ( M gcd 1 ) ) ) |
| 9 | lcmgcd | |- ( ( M e. ZZ /\ 1 e. ZZ ) -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( abs ` ( M x. 1 ) ) ) |
|
| 10 | 3 9 | mpan2 | |- ( M e. ZZ -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( abs ` ( M x. 1 ) ) ) |
| 11 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 12 | 11 | mulridd | |- ( M e. ZZ -> ( M x. 1 ) = M ) |
| 13 | 12 | fveq2d | |- ( M e. ZZ -> ( abs ` ( M x. 1 ) ) = ( abs ` M ) ) |
| 14 | 8 10 13 | 3eqtrd | |- ( M e. ZZ -> ( M lcm 1 ) = ( abs ` M ) ) |