This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| Assertion | lbsexg | ⊢ ( ( CHOICE ∧ 𝑊 ∈ LVec ) → 𝐽 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 2 | id | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LVec ) | |
| 3 | fvex | ⊢ ( Base ‘ 𝑊 ) ∈ V | |
| 4 | 3 | pwex | ⊢ 𝒫 ( Base ‘ 𝑊 ) ∈ V |
| 5 | dfac10 | ⊢ ( CHOICE ↔ dom card = V ) | |
| 6 | 5 | biimpi | ⊢ ( CHOICE → dom card = V ) |
| 7 | 4 6 | eleqtrrid | ⊢ ( CHOICE → 𝒫 ( Base ‘ 𝑊 ) ∈ dom card ) |
| 8 | 0ss | ⊢ ∅ ⊆ ( Base ‘ 𝑊 ) | |
| 9 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ∅ ∖ { 𝑥 } ) ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
| 12 | 1 10 11 | lbsextg | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 ( Base ‘ 𝑊 ) ∈ dom card ) ∧ ∅ ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ∅ ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ∅ ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 ) |
| 13 | 8 9 12 | mp3an23 | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝒫 ( Base ‘ 𝑊 ) ∈ dom card ) → ∃ 𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 ) |
| 14 | 2 7 13 | syl2anr | ⊢ ( ( CHOICE ∧ 𝑊 ∈ LVec ) → ∃ 𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 ) |
| 15 | rexn0 | ⊢ ( ∃ 𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 → 𝐽 ≠ ∅ ) | |
| 16 | 14 15 | syl | ⊢ ( ( CHOICE ∧ 𝑊 ∈ LVec ) → 𝐽 ≠ ∅ ) |