This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| lbsex.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lbsex.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lbsextg | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 2 | lbsex.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | lbsex.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | simp1l | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝑊 ∈ LVec ) | |
| 5 | simp2 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝐶 ⊆ 𝑉 ) | |
| 6 | simp3 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) | |
| 7 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 8 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 9 | 8 | difeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐶 ∖ { 𝑥 } ) = ( 𝐶 ∖ { 𝑦 } ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) |
| 11 | 7 10 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) ) |
| 12 | 11 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) ) |
| 13 | 12 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) |
| 14 | 6 13 | sylib | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) |
| 15 | 8 | difeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∖ { 𝑥 } ) = ( 𝑧 ∖ { 𝑦 } ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) |
| 17 | 7 16 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) ) |
| 18 | 17 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) ) |
| 19 | 18 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) |
| 20 | 19 | anbi2i | ⊢ ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) ↔ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) ) |
| 21 | 20 | rabbii | ⊢ { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) } |
| 22 | simp1r | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝒫 𝑉 ∈ dom card ) | |
| 23 | 2 1 3 4 5 14 21 22 | lbsextlem4 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 ) |