This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of "less than or equal to" expressed in terms of meet and less-than. ( nssinpss analog.) (Contributed by NM, 5-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latnlemlt.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latnlemlt.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latnlemlt.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| latnlemlt.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latnlemlt | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∧ 𝑌 ) < 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latnlemlt.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latnlemlt.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latnlemlt.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | latnlemlt.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | 1 2 4 | latmle1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| 6 | 5 | biantrurd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ≠ 𝑋 ↔ ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≠ 𝑋 ) ) ) |
| 7 | 1 2 4 | latleeqm1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∧ 𝑌 ) = 𝑋 ) ) |
| 8 | 7 | necon3bbid | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∧ 𝑌 ) ≠ 𝑋 ) ) |
| 9 | simp1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) | |
| 10 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 11 | simp2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 2 3 | pltval | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) < 𝑋 ↔ ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≠ 𝑋 ) ) ) |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) < 𝑋 ↔ ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≠ 𝑋 ) ) ) |
| 14 | 6 8 13 | 3bitr4d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∧ 𝑌 ) < 𝑋 ) ) |