This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latlem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| latlem.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latlem | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latlem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | latlem.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | simp1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) | |
| 5 | simp2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simp3 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 7 | opelxpi | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) | |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 9 | 1 2 3 | islat | ⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
| 10 | simprl | ⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) → dom ∨ = ( 𝐵 × 𝐵 ) ) | |
| 11 | 9 10 | sylbi | ⊢ ( 𝐾 ∈ Lat → dom ∨ = ( 𝐵 × 𝐵 ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → dom ∨ = ( 𝐵 × 𝐵 ) ) |
| 13 | 8 12 | eleqtrrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
| 14 | 1 2 4 5 6 13 | joincl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 15 | simprr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) → dom ∧ = ( 𝐵 × 𝐵 ) ) | |
| 16 | 9 15 | sylbi | ⊢ ( 𝐾 ∈ Lat → dom ∧ = ( 𝐵 × 𝐵 ) ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → dom ∧ = ( 𝐵 × 𝐵 ) ) |
| 18 | 8 17 | eleqtrrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
| 19 | 1 3 4 5 6 18 | meetcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 20 | 14 19 | jca | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) ) |