This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlem.b | |- B = ( Base ` K ) |
|
| latlem.j | |- .\/ = ( join ` K ) |
||
| latlem.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latlem | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .\/ Y ) e. B /\ ( X ./\ Y ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlem.b | |- B = ( Base ` K ) |
|
| 2 | latlem.j | |- .\/ = ( join ` K ) |
|
| 3 | latlem.m | |- ./\ = ( meet ` K ) |
|
| 4 | simp1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> K e. Lat ) |
|
| 5 | simp2 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 6 | simp3 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 7 | opelxpi | |- ( ( X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
|
| 8 | 7 | 3adant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
| 9 | 1 2 3 | islat | |- ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
| 10 | simprl | |- ( ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) -> dom .\/ = ( B X. B ) ) |
|
| 11 | 9 10 | sylbi | |- ( K e. Lat -> dom .\/ = ( B X. B ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> dom .\/ = ( B X. B ) ) |
| 13 | 8 12 | eleqtrrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom .\/ ) |
| 14 | 1 2 4 5 6 13 | joincl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
| 15 | simprr | |- ( ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) -> dom ./\ = ( B X. B ) ) |
|
| 16 | 9 15 | sylbi | |- ( K e. Lat -> dom ./\ = ( B X. B ) ) |
| 17 | 16 | 3ad2ant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> dom ./\ = ( B X. B ) ) |
| 18 | 8 17 | eleqtrrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom ./\ ) |
| 19 | 1 3 4 5 6 18 | meetcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 20 | 14 19 | jca | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .\/ Y ) e. B /\ ( X ./\ Y ) e. B ) ) |