This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latnlej | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | 1 2 3 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) |
| 5 | 4 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) |
| 6 | breq1 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ↔ 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) ) | |
| 7 | 5 6 | syl5ibrcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 = 𝑌 → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
| 8 | 7 | necon3bd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → 𝑋 ≠ 𝑌 ) ) |
| 9 | 1 2 3 | latlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) |
| 10 | 9 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) |
| 11 | breq1 | ⊢ ( 𝑋 = 𝑍 → ( 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ↔ 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) ) | |
| 12 | 10 11 | syl5ibrcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 = 𝑍 → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
| 13 | 12 | necon3bd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → 𝑋 ≠ 𝑍 ) ) |
| 14 | 8 13 | jcad | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ) ) ) |
| 15 | 14 | 3impia | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ) ) |