This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| chlub.1 | ⊢ 𝐶 ∈ Cℋ | ||
| chlej12.4 | ⊢ 𝐷 ∈ Cℋ | ||
| Assertion | chlej12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | chlub.1 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | chlej12.4 | ⊢ 𝐷 ∈ Cℋ | |
| 5 | 1 2 3 | chlej1i | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
| 6 | 3 4 2 | chlej2i | ⊢ ( 𝐶 ⊆ 𝐷 → ( 𝐵 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐷 ) ) |
| 7 | 5 6 | sylan9ss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐷 ) ) |