This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of a poset is commutative. (The antecedent <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ i.e., "the joins exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joincom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joincom.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | joincom | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joincom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joincom.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | 1 2 | joincomALT | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |