This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of lattice join of 4 classes. ( chj4 analog.) (Contributed by NM, 14-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latjass.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latj4 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ ( 𝑍 ∨ 𝑊 ) ) = ( ( 𝑋 ∨ 𝑍 ) ∨ ( 𝑌 ∨ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latjass.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | simp1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 4 | simp2r | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 5 | simp3l | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 6 | simp3r | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑊 ∈ 𝐵 ) | |
| 7 | 1 2 | latj12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑌 ∨ ( 𝑍 ∨ 𝑊 ) ) = ( 𝑍 ∨ ( 𝑌 ∨ 𝑊 ) ) ) |
| 8 | 3 4 5 6 7 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑌 ∨ ( 𝑍 ∨ 𝑊 ) ) = ( 𝑍 ∨ ( 𝑌 ∨ 𝑊 ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 ∨ ( 𝑌 ∨ ( 𝑍 ∨ 𝑊 ) ) ) = ( 𝑋 ∨ ( 𝑍 ∨ ( 𝑌 ∨ 𝑊 ) ) ) ) |
| 10 | simp2l | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑍 ∨ 𝑊 ) ∈ 𝐵 ) |
| 12 | 3 5 6 11 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑍 ∨ 𝑊 ) ∈ 𝐵 ) |
| 13 | 1 2 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑍 ∨ 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ ( 𝑍 ∨ 𝑊 ) ) = ( 𝑋 ∨ ( 𝑌 ∨ ( 𝑍 ∨ 𝑊 ) ) ) ) |
| 14 | 3 10 4 12 13 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ ( 𝑍 ∨ 𝑊 ) ) = ( 𝑋 ∨ ( 𝑌 ∨ ( 𝑍 ∨ 𝑊 ) ) ) ) |
| 15 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑊 ) ∈ 𝐵 ) |
| 16 | 3 4 6 15 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑌 ∨ 𝑊 ) ∈ 𝐵 ) |
| 17 | 1 2 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( 𝑌 ∨ 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑍 ) ∨ ( 𝑌 ∨ 𝑊 ) ) = ( 𝑋 ∨ ( 𝑍 ∨ ( 𝑌 ∨ 𝑊 ) ) ) ) |
| 18 | 3 10 5 16 17 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑍 ) ∨ ( 𝑌 ∨ 𝑊 ) ) = ( 𝑋 ∨ ( 𝑍 ∨ ( 𝑌 ∨ 𝑊 ) ) ) ) |
| 19 | 9 14 18 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ ( 𝑍 ∨ 𝑊 ) ) = ( ( 𝑋 ∨ 𝑍 ) ∨ ( 𝑌 ∨ 𝑊 ) ) ) |