This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of the join of 4 Hilbert lattice elements. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chj4 | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj12 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) → ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐵 ∈ Cℋ ∧ ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ) → ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) |
| 3 | 2 | adantll | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ) → ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) |
| 4 | 3 | oveq2d | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) ) |
| 5 | chjcl | ⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) → ( 𝐶 ∨ℋ 𝐷 ) ∈ Cℋ ) | |
| 6 | chjass | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ( 𝐶 ∨ℋ 𝐷 ) ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) ) ) | |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) ) ) |
| 8 | 5 7 | sylan2 | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) ) ) |
| 9 | chjcl | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) → ( 𝐵 ∨ℋ 𝐷 ) ∈ Cℋ ) | |
| 10 | chjass | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐷 ) ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) ) | |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 ∨ℋ 𝐷 ) ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) ) |
| 12 | 9 11 | sylan2 | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) ) |
| 13 | 12 | an4s | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) ) |
| 14 | 4 8 13 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) |