This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rearrangement of Hilbert lattice join. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chj12 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( 𝐵 ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chjcom | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) |
| 3 | 2 | oveq1d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( ( 𝐵 ∨ℋ 𝐴 ) ∨ℋ 𝐶 ) ) |
| 4 | chjass | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) | |
| 5 | chjass | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐵 ∨ℋ 𝐴 ) ∨ℋ 𝐶 ) = ( 𝐵 ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) | |
| 6 | 5 | 3com12 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐵 ∨ℋ 𝐴 ) ∨ℋ 𝐶 ) = ( 𝐵 ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 7 | 3 4 6 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( 𝐵 ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |