This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in MegPav2002 p. 362. (Contributed by NM, 2-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latjass.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latj32 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ 𝑍 ) = ( ( 𝑋 ∨ 𝑍 ) ∨ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latjass.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑌 ) ) |
| 4 | 3 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑌 ) ) |
| 5 | 4 | oveq2d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ ( 𝑌 ∨ 𝑍 ) ) = ( 𝑋 ∨ ( 𝑍 ∨ 𝑌 ) ) ) |
| 6 | 1 2 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ 𝑍 ) = ( 𝑋 ∨ ( 𝑌 ∨ 𝑍 ) ) ) |
| 7 | simpr1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simpr3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 9 | simpr2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 10 | 7 8 9 | 3jca | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 11 | 1 2 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑍 ) ∨ 𝑌 ) = ( 𝑋 ∨ ( 𝑍 ∨ 𝑌 ) ) ) |
| 12 | 10 11 | syldan | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑍 ) ∨ 𝑌 ) = ( 𝑋 ∨ ( 𝑍 ∨ 𝑌 ) ) ) |
| 13 | 5 6 12 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ 𝑍 ) = ( ( 𝑋 ∨ 𝑍 ) ∨ 𝑌 ) ) |