This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Version of cbvral3v with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-May-2005) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvral3vw.1 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) | |
| cbvral3vw.2 | ⊢ ( 𝑦 = 𝑣 → ( 𝜒 ↔ 𝜃 ) ) | ||
| cbvral3vw.3 | ⊢ ( 𝑧 = 𝑢 → ( 𝜃 ↔ 𝜓 ) ) | ||
| Assertion | cbvral3vw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral3vw.1 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | cbvral3vw.2 | ⊢ ( 𝑦 = 𝑣 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | cbvral3vw.3 | ⊢ ( 𝑧 = 𝑢 → ( 𝜃 ↔ 𝜓 ) ) | |
| 4 | 1 | 2ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜒 ) ) |
| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜒 ) |
| 6 | 2 3 | cbvral2vw | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜒 ↔ ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 𝜓 ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜒 ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 𝜓 ) |
| 8 | 5 7 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 𝜓 ) |