This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice absorption law. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chabs1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 3 | 1 2 | pm3.2i | ⊢ ( 𝐴 ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ∈ Cℋ ) | |
| 5 | chincl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) | |
| 6 | chlub | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) ↔ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐴 ) ) | |
| 7 | 4 5 4 6 | syl3anc | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) ↔ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐴 ) ) |
| 8 | 3 7 | mpbii | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐴 ) |
| 9 | chub1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 10 | 5 9 | syldan | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
| 11 | 8 10 | eqssd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) = 𝐴 ) |