This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Kolmogorov quotient of a regular space is regular. By regr1 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T_3). (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kqreg | ⊢ ( 𝐽 ∈ Reg ↔ ( KQ ‘ 𝐽 ) ∈ Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | regtop | ⊢ ( 𝐽 ∈ Reg → 𝐽 ∈ Top ) | |
| 2 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐽 ∈ Reg → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 5 | 4 | kqreglem1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Reg ) |
| 6 | 3 5 | mpancom | ⊢ ( 𝐽 ∈ Reg → ( KQ ‘ 𝐽 ) ∈ Reg ) |
| 7 | regtop | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg → ( KQ ‘ 𝐽 ) ∈ Top ) | |
| 8 | kqtop | ⊢ ( 𝐽 ∈ Top ↔ ( KQ ‘ 𝐽 ) ∈ Top ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ Top ) |
| 10 | 9 2 | sylib | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 | 4 | kqreglem2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) → 𝐽 ∈ Reg ) |
| 12 | 10 11 | mpancom | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ Reg ) |
| 13 | 6 12 | impbii | ⊢ ( 𝐽 ∈ Reg ↔ ( KQ ‘ 𝐽 ) ∈ Reg ) |