This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Kolmogorov quotient of a regular space is regular. By regr1 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T_3). (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kqreg | |- ( J e. Reg <-> ( KQ ` J ) e. Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | regtop | |- ( J e. Reg -> J e. Top ) |
|
| 2 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
| 3 | 1 2 | sylib | |- ( J e. Reg -> J e. ( TopOn ` U. J ) ) |
| 4 | eqid | |- ( x e. U. J |-> { y e. J | x e. y } ) = ( x e. U. J |-> { y e. J | x e. y } ) |
|
| 5 | 4 | kqreglem1 | |- ( ( J e. ( TopOn ` U. J ) /\ J e. Reg ) -> ( KQ ` J ) e. Reg ) |
| 6 | 3 5 | mpancom | |- ( J e. Reg -> ( KQ ` J ) e. Reg ) |
| 7 | regtop | |- ( ( KQ ` J ) e. Reg -> ( KQ ` J ) e. Top ) |
|
| 8 | kqtop | |- ( J e. Top <-> ( KQ ` J ) e. Top ) |
|
| 9 | 7 8 | sylibr | |- ( ( KQ ` J ) e. Reg -> J e. Top ) |
| 10 | 9 2 | sylib | |- ( ( KQ ` J ) e. Reg -> J e. ( TopOn ` U. J ) ) |
| 11 | 4 | kqreglem2 | |- ( ( J e. ( TopOn ` U. J ) /\ ( KQ ` J ) e. Reg ) -> J e. Reg ) |
| 12 | 10 11 | mpancom | |- ( ( KQ ` J ) e. Reg -> J e. Reg ) |
| 13 | 6 12 | impbii | |- ( J e. Reg <-> ( KQ ` J ) e. Reg ) |