This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem6 | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) ↔ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) ) | |
| 2 | n0 | ⊢ ( 𝑧 ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ 𝑧 ) | |
| 3 | 2 | biimpi | ⊢ ( 𝑧 ≠ ∅ → ∃ 𝑣 𝑣 ∈ 𝑧 ) |
| 4 | ne0i | ⊢ ( 𝑣 ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
| 5 | 4 | necon2bi | ⊢ ( 𝐴 = ∅ → ¬ 𝑣 ∈ 𝐴 ) |
| 6 | 5 | imim2i | ⊢ ( ( 𝜑 → 𝐴 = ∅ ) → ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) → ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
| 8 | 7 | alrimiv | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) → ∀ 𝑣 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
| 9 | 19.29r | ⊢ ( ( ∃ 𝑣 𝑣 ∈ 𝑧 ∧ ∀ 𝑣 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) → ∃ 𝑣 ( 𝑣 ∈ 𝑧 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) ) | |
| 10 | df-rex | ⊢ ( ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑧 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( ∃ 𝑣 𝑣 ∈ 𝑧 ∧ ∀ 𝑣 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) → ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
| 12 | 3 8 11 | syl2an | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) → ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
| 13 | 12 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
| 14 | 1 13 | sylbir | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |