This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| ixxss12.2 | ⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧 ∧ 𝑧 𝑈 𝑦 ) } ) | ||
| ixxss12.3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 𝑊 𝐶 ∧ 𝐶 𝑇 𝑤 ) → 𝐴 𝑅 𝑤 ) ) | ||
| ixxss12.4 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 𝑈 𝐷 ∧ 𝐷 𝑋 𝐵 ) → 𝑤 𝑆 𝐵 ) ) | ||
| Assertion | ixxss12 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) → ( 𝐶 𝑃 𝐷 ) ⊆ ( 𝐴 𝑂 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | ixxss12.2 | ⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧 ∧ 𝑧 𝑈 𝑦 ) } ) | |
| 3 | ixxss12.3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 𝑊 𝐶 ∧ 𝐶 𝑇 𝑤 ) → 𝐴 𝑅 𝑤 ) ) | |
| 4 | ixxss12.4 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 𝑈 𝐷 ∧ 𝐷 𝑋 𝐵 ) → 𝑤 𝑆 𝐵 ) ) | |
| 5 | 2 | elixx3g | ⊢ ( 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ↔ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐶 𝑇 𝑤 ∧ 𝑤 𝑈 𝐷 ) ) ) |
| 6 | 5 | simplbi | ⊢ ( 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) → ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ) |
| 8 | 7 | simp3d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝑤 ∈ ℝ* ) |
| 9 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝐴 𝑊 𝐶 ) | |
| 10 | 5 | simprbi | ⊢ ( 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) → ( 𝐶 𝑇 𝑤 ∧ 𝑤 𝑈 𝐷 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → ( 𝐶 𝑇 𝑤 ∧ 𝑤 𝑈 𝐷 ) ) |
| 12 | 11 | simpld | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝐶 𝑇 𝑤 ) |
| 13 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝐴 ∈ ℝ* ) | |
| 14 | 7 | simp1d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝐶 ∈ ℝ* ) |
| 15 | 13 14 8 3 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → ( ( 𝐴 𝑊 𝐶 ∧ 𝐶 𝑇 𝑤 ) → 𝐴 𝑅 𝑤 ) ) |
| 16 | 9 12 15 | mp2and | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝐴 𝑅 𝑤 ) |
| 17 | 11 | simprd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝑤 𝑈 𝐷 ) |
| 18 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝐷 𝑋 𝐵 ) | |
| 19 | 7 | simp2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝐷 ∈ ℝ* ) |
| 20 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝐵 ∈ ℝ* ) | |
| 21 | 8 19 20 4 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → ( ( 𝑤 𝑈 𝐷 ∧ 𝐷 𝑋 𝐵 ) → 𝑤 𝑆 𝐵 ) ) |
| 22 | 17 18 21 | mp2and | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝑤 𝑆 𝐵 ) |
| 23 | 1 | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 25 | 8 16 22 24 | mpbir3and | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) ) → 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) |
| 26 | 25 | ex | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) → ( 𝑤 ∈ ( 𝐶 𝑃 𝐷 ) → 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) ) |
| 27 | 26 | ssrdv | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 𝑊 𝐶 ∧ 𝐷 𝑋 𝐵 ) ) → ( 𝐶 𝑃 𝐷 ) ⊆ ( 𝐴 𝑂 𝐵 ) ) |