This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| ixxss12.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
||
| ixxss12.3 | |- ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A W C /\ C T w ) -> A R w ) ) |
||
| ixxss12.4 | |- ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w U D /\ D X B ) -> w S B ) ) |
||
| Assertion | ixxss12 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) -> ( C P D ) C_ ( A O B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | ixxss12.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
|
| 3 | ixxss12.3 | |- ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A W C /\ C T w ) -> A R w ) ) |
|
| 4 | ixxss12.4 | |- ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w U D /\ D X B ) -> w S B ) ) |
|
| 5 | 2 | elixx3g | |- ( w e. ( C P D ) <-> ( ( C e. RR* /\ D e. RR* /\ w e. RR* ) /\ ( C T w /\ w U D ) ) ) |
| 6 | 5 | simplbi | |- ( w e. ( C P D ) -> ( C e. RR* /\ D e. RR* /\ w e. RR* ) ) |
| 7 | 6 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( C e. RR* /\ D e. RR* /\ w e. RR* ) ) |
| 8 | 7 | simp3d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> w e. RR* ) |
| 9 | simplrl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> A W C ) |
|
| 10 | 5 | simprbi | |- ( w e. ( C P D ) -> ( C T w /\ w U D ) ) |
| 11 | 10 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( C T w /\ w U D ) ) |
| 12 | 11 | simpld | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> C T w ) |
| 13 | simplll | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> A e. RR* ) |
|
| 14 | 7 | simp1d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> C e. RR* ) |
| 15 | 13 14 8 3 | syl3anc | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( ( A W C /\ C T w ) -> A R w ) ) |
| 16 | 9 12 15 | mp2and | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> A R w ) |
| 17 | 11 | simprd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> w U D ) |
| 18 | simplrr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> D X B ) |
|
| 19 | 7 | simp2d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> D e. RR* ) |
| 20 | simpllr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> B e. RR* ) |
|
| 21 | 8 19 20 4 | syl3anc | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( ( w U D /\ D X B ) -> w S B ) ) |
| 22 | 17 18 21 | mp2and | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> w S B ) |
| 23 | 1 | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 24 | 23 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 25 | 8 16 22 24 | mpbir3and | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) /\ w e. ( C P D ) ) -> w e. ( A O B ) ) |
| 26 | 25 | ex | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) -> ( w e. ( C P D ) -> w e. ( A O B ) ) ) |
| 27 | 26 | ssrdv | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A W C /\ D X B ) ) -> ( C P D ) C_ ( A O B ) ) |