This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpf | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 2 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 3 | 2 | sseld | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 4 | 3 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 5 | 4 | anim2i | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 7 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝐹 | |
| 9 | 6 7 8 | ffnfvf | ⊢ ( 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 10 | 5 9 | sylibr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 12 | 1 11 | sylbi | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |