This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of Enderton p. 33. (Contributed by NM, 29-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iunpw.1 | ⊢ 𝐴 ∈ V | |
| Assertion | iunpw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunpw.1 | ⊢ 𝐴 ∈ V | |
| 2 | sseq2 | ⊢ ( 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ∪ 𝐴 ) ) | |
| 3 | 2 | biimprcd | ⊢ ( 𝑦 ⊆ ∪ 𝐴 → ( 𝑥 = ∪ 𝐴 → 𝑦 ⊆ 𝑥 ) ) |
| 4 | 3 | reximdv | ⊢ ( 𝑦 ⊆ ∪ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
| 5 | 4 | com12 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
| 6 | ssiun | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥 ) | |
| 7 | uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 8 | 6 7 | sseqtrrdi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝐴 ) |
| 9 | 5 8 | impbid1 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
| 10 | velpw | ⊢ ( 𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴 ) | |
| 11 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ) | |
| 12 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥 ) | |
| 13 | 12 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
| 14 | 11 13 | bitri | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
| 15 | 9 10 14 | 3bitr4g | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) |
| 16 | 15 | eqrdv | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |
| 17 | ssid | ⊢ ∪ 𝐴 ⊆ ∪ 𝐴 | |
| 18 | 1 | uniex | ⊢ ∪ 𝐴 ∈ V |
| 19 | 18 | elpw | ⊢ ( ∪ 𝐴 ∈ 𝒫 ∪ 𝐴 ↔ ∪ 𝐴 ⊆ ∪ 𝐴 ) |
| 20 | eleq2 | ⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ( ∪ 𝐴 ∈ 𝒫 ∪ 𝐴 ↔ ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) | |
| 21 | 19 20 | bitr3id | ⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ( ∪ 𝐴 ⊆ ∪ 𝐴 ↔ ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) |
| 22 | 17 21 | mpbii | ⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |
| 23 | eliun | ⊢ ( ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 ) | |
| 24 | 22 23 | sylib | ⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 ) |
| 25 | elssuni | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴 ) | |
| 26 | elpwi | ⊢ ( ∪ 𝐴 ∈ 𝒫 𝑥 → ∪ 𝐴 ⊆ 𝑥 ) | |
| 27 | 25 26 | anim12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∪ 𝐴 ∈ 𝒫 𝑥 ) → ( 𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥 ) ) |
| 28 | eqss | ⊢ ( 𝑥 = ∪ 𝐴 ↔ ( 𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥 ) ) | |
| 29 | 27 28 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∪ 𝐴 ∈ 𝒫 𝑥 ) → 𝑥 = ∪ 𝐴 ) |
| 30 | 29 | ex | ⊢ ( 𝑥 ∈ 𝐴 → ( ∪ 𝐴 ∈ 𝒫 𝑥 → 𝑥 = ∪ 𝐴 ) ) |
| 31 | 30 | reximia | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ) |
| 32 | 24 31 | syl | ⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ) |
| 33 | 16 32 | impbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |