This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iuncom | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐶 ) | |
| 2 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ) | |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ) |
| 4 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐶 ) | |
| 5 | 4 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐶 ) |
| 6 | 1 3 5 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 7 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ) | |
| 8 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 10 | 9 | eqriv | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |