This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgposval and itgreval . (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgvallem3.1 | |- ( ( ph /\ x e. A ) -> B = 0 ) |
|
| Assertion | itgvallem3 | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgvallem3.1 | |- ( ( ph /\ x e. A ) -> B = 0 ) |
|
| 2 | 1 | adantrr | |- ( ( ph /\ ( x e. A /\ 0 <_ B ) ) -> B = 0 ) |
| 3 | 2 | ifeq1da | |- ( ph -> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) = if ( ( x e. A /\ 0 <_ B ) , 0 , 0 ) ) |
| 4 | ifid | |- if ( ( x e. A /\ 0 <_ B ) , 0 , 0 ) = 0 |
|
| 5 | 3 4 | eqtrdi | |- ( ph -> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) = 0 ) |
| 6 | 5 | mpteq2dv | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) = ( x e. RR |-> 0 ) ) |
| 7 | fconstmpt | |- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
|
| 8 | 6 7 | eqtr4di | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) = ( RR X. { 0 } ) ) |
| 9 | 8 | fveq2d | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) |
| 10 | itg20 | |- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
|
| 11 | 9 10 | eqtrdi | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) = 0 ) |