This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +oo for functions that take the value +oo on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-itg2 | ⊢ ∫2 = ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | citg2 | ⊢ ∫2 | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cc0 | ⊢ 0 | |
| 3 | cicc | ⊢ [,] | |
| 4 | cpnf | ⊢ +∞ | |
| 5 | 2 4 3 | co | ⊢ ( 0 [,] +∞ ) |
| 6 | cmap | ⊢ ↑m | |
| 7 | cr | ⊢ ℝ | |
| 8 | 5 7 6 | co | ⊢ ( ( 0 [,] +∞ ) ↑m ℝ ) |
| 9 | vx | ⊢ 𝑥 | |
| 10 | vg | ⊢ 𝑔 | |
| 11 | citg1 | ⊢ ∫1 | |
| 12 | 11 | cdm | ⊢ dom ∫1 |
| 13 | 10 | cv | ⊢ 𝑔 |
| 14 | cle | ⊢ ≤ | |
| 15 | 14 | cofr | ⊢ ∘r ≤ |
| 16 | 1 | cv | ⊢ 𝑓 |
| 17 | 13 16 15 | wbr | ⊢ 𝑔 ∘r ≤ 𝑓 |
| 18 | 9 | cv | ⊢ 𝑥 |
| 19 | 13 11 | cfv | ⊢ ( ∫1 ‘ 𝑔 ) |
| 20 | 18 19 | wceq | ⊢ 𝑥 = ( ∫1 ‘ 𝑔 ) |
| 21 | 17 20 | wa | ⊢ ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) |
| 22 | 21 10 12 | wrex | ⊢ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) |
| 23 | 22 9 | cab | ⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
| 24 | cxr | ⊢ ℝ* | |
| 25 | clt | ⊢ < | |
| 26 | 23 24 25 | csup | ⊢ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) |
| 27 | 1 8 26 | cmpt | ⊢ ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
| 28 | 0 27 | wceq | ⊢ ∫2 = ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |