This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for itcovalt2lem2 . (Contributed by AV, 6-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcovalt2lem2lem1 | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑁 + 𝐶 ) · 𝑌 ) − 𝐶 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | ⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℝ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 4 | simpr | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 5 | simpr | ⊢ ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℕ0 ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℕ0 ) |
| 7 | 4 6 | nn0addcld | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ∈ ℕ0 ) |
| 8 | 7 | nn0red | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ∈ ℝ ) |
| 9 | nnnn0 | ⊢ ( 𝑌 ∈ ℕ → 𝑌 ∈ ℕ0 ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑌 ∈ ℕ0 ) |
| 11 | 7 10 | nn0mulcld | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · 𝑌 ) ∈ ℕ0 ) |
| 12 | 11 | nn0red | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · 𝑌 ) ∈ ℝ ) |
| 13 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
| 15 | 6 | nn0red | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 16 | 4 | nn0red | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 17 | 15 16 | addge02d | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 ≤ 𝑁 ↔ 𝐶 ≤ ( 𝑁 + 𝐶 ) ) ) |
| 18 | 14 17 | mpbid | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ≤ ( 𝑁 + 𝐶 ) ) |
| 19 | simpll | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑌 ∈ ℕ ) | |
| 20 | 19 | nnred | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑌 ∈ ℝ ) |
| 21 | 7 | nn0ge0d | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝑁 + 𝐶 ) ) |
| 22 | nnge1 | ⊢ ( 𝑌 ∈ ℕ → 1 ≤ 𝑌 ) | |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ 𝑌 ) |
| 24 | 8 20 21 23 | lemulge11d | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ≤ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ) |
| 25 | 3 8 12 18 24 | letrd | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ≤ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ) |
| 26 | nn0sub | ⊢ ( ( 𝐶 ∈ ℕ0 ∧ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ∈ ℕ0 ) → ( 𝐶 ≤ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ↔ ( ( ( 𝑁 + 𝐶 ) · 𝑌 ) − 𝐶 ) ∈ ℕ0 ) ) | |
| 27 | 6 11 26 | syl2anc | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐶 ≤ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ↔ ( ( ( 𝑁 + 𝐶 ) · 𝑌 ) − 𝐶 ) ∈ ℕ0 ) ) |
| 28 | 25 27 | mpbid | ⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑁 + 𝐶 ) · 𝑌 ) − 𝐶 ) ∈ ℕ0 ) |