This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for itcovalt2lem2 . (Contributed by AV, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcovalt2lem2lem2 | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) − 𝐶 ) ) + 𝐶 ) = ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) − 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 2 ∈ ℂ ) | |
| 2 | simpr | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 3 | simpr | ⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℕ0 ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℕ0 ) |
| 5 | 2 4 | nn0addcld | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ∈ ℕ0 ) |
| 6 | 5 | nn0cnd | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ∈ ℂ ) |
| 7 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 8 | 7 | a1i | ⊢ ( 𝑌 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 9 | id | ⊢ ( 𝑌 ∈ ℕ0 → 𝑌 ∈ ℕ0 ) | |
| 10 | 8 9 | nn0expcld | ⊢ ( 𝑌 ∈ ℕ0 → ( 2 ↑ 𝑌 ) ∈ ℕ0 ) |
| 11 | 10 | nn0cnd | ⊢ ( 𝑌 ∈ ℕ0 → ( 2 ↑ 𝑌 ) ∈ ℂ ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑌 ) ∈ ℂ ) |
| 13 | 6 12 | mulcld | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ∈ ℂ ) |
| 14 | nn0cn | ⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℂ ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 16 | 1 13 15 | subdid | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) − 𝐶 ) ) = ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( 2 · 𝐶 ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) − 𝐶 ) ) + 𝐶 ) = ( ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( 2 · 𝐶 ) ) + 𝐶 ) ) |
| 18 | 7 | a1i | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 2 ∈ ℕ0 ) |
| 19 | 10 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑌 ) ∈ ℕ0 ) |
| 20 | 5 19 | nn0mulcld | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ∈ ℕ0 ) |
| 21 | 18 20 | nn0mulcld | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) ∈ ℕ0 ) |
| 22 | 21 | nn0cnd | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) ∈ ℂ ) |
| 23 | 7 | a1i | ⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → 2 ∈ ℕ0 ) |
| 24 | 23 3 | nn0mulcld | ⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 2 · 𝐶 ) ∈ ℕ0 ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · 𝐶 ) ∈ ℕ0 ) |
| 26 | 25 | nn0cnd | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · 𝐶 ) ∈ ℂ ) |
| 27 | 4 | nn0cnd | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 28 | 22 26 27 | subsubd | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( ( 2 · 𝐶 ) − 𝐶 ) ) = ( ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( 2 · 𝐶 ) ) + 𝐶 ) ) |
| 29 | 1 6 12 | mul12d | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) = ( ( 𝑁 + 𝐶 ) · ( 2 · ( 2 ↑ 𝑌 ) ) ) ) |
| 30 | 2cnd | ⊢ ( 𝑌 ∈ ℕ0 → 2 ∈ ℂ ) | |
| 31 | 30 11 | mulcomd | ⊢ ( 𝑌 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝑌 ) ) = ( ( 2 ↑ 𝑌 ) · 2 ) ) |
| 32 | 30 9 | expp1d | ⊢ ( 𝑌 ∈ ℕ0 → ( 2 ↑ ( 𝑌 + 1 ) ) = ( ( 2 ↑ 𝑌 ) · 2 ) ) |
| 33 | 31 32 | eqtr4d | ⊢ ( 𝑌 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝑌 ) ) = ( 2 ↑ ( 𝑌 + 1 ) ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( 2 ↑ 𝑌 ) ) = ( 2 ↑ ( 𝑌 + 1 ) ) ) |
| 35 | 34 | oveq2d | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · ( 2 · ( 2 ↑ 𝑌 ) ) ) = ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) ) |
| 36 | 29 35 | eqtrd | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) = ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) ) |
| 37 | 2txmxeqx | ⊢ ( 𝐶 ∈ ℂ → ( ( 2 · 𝐶 ) − 𝐶 ) = 𝐶 ) | |
| 38 | 14 37 | syl | ⊢ ( 𝐶 ∈ ℕ0 → ( ( 2 · 𝐶 ) − 𝐶 ) = 𝐶 ) |
| 39 | 38 | ad2antlr | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · 𝐶 ) − 𝐶 ) = 𝐶 ) |
| 40 | 36 39 | oveq12d | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( ( 2 · 𝐶 ) − 𝐶 ) ) = ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) − 𝐶 ) ) |
| 41 | 17 28 40 | 3eqtr2d | ⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) − 𝐶 ) ) + 𝐶 ) = ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) − 𝐶 ) ) |