This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for itcovalt2 : induction step. (Contributed by AV, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itcovalt2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 𝐶 ) ) | |
| Assertion | itcovalt2lem2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalt2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 𝐶 ) ) | |
| 2 | nn0ex | ⊢ ℕ0 ∈ V | |
| 3 | 2 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 𝐶 ) ) ∈ V |
| 4 | 1 3 | eqeltri | ⊢ 𝐹 ∈ V |
| 5 | simpl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) | |
| 6 | simpr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) | |
| 7 | itcovalsucov | ⊢ ( ( 𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ∘ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) | |
| 8 | 4 5 6 7 | mp3an2ani | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ∘ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) |
| 9 | 2nn | ⊢ 2 ∈ ℕ | |
| 10 | 9 | a1i | ⊢ ( 𝑦 ∈ ℕ0 → 2 ∈ ℕ ) |
| 11 | id | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℕ0 ) | |
| 12 | 10 11 | nnexpcld | ⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
| 13 | itcovalt2lem2lem1 | ⊢ ( ( ( ( 2 ↑ 𝑦 ) ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ∈ ℕ0 ) | |
| 14 | 12 13 | sylanl1 | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ∈ ℕ0 ) |
| 15 | eqidd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) | |
| 16 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 2 · 𝑛 ) = ( 2 · 𝑚 ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 2 · 𝑛 ) + 𝐶 ) = ( ( 2 · 𝑚 ) + 𝐶 ) ) |
| 18 | 17 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 𝐶 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 𝐶 ) ) |
| 19 | 1 18 | eqtri | ⊢ 𝐹 = ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 𝐶 ) ) |
| 20 | 19 | a1i | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → 𝐹 = ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 𝐶 ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑚 = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) → ( 2 · 𝑚 ) = ( 2 · ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) | |
| 22 | 21 | oveq1d | ⊢ ( 𝑚 = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) → ( ( 2 · 𝑚 ) + 𝐶 ) = ( ( 2 · ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) + 𝐶 ) ) |
| 23 | 14 15 20 22 | fmptco | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐹 ∘ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) + 𝐶 ) ) ) |
| 24 | itcovalt2lem2lem2 | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) + 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) | |
| 25 | 24 | mpteq2dva | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) + 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) |
| 26 | 23 25 | eqtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐹 ∘ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( 𝐹 ∘ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) |
| 28 | 8 27 | eqtrd | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) |