This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcoval0 | ⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval | ⊢ ( 𝐹 ∈ 𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) ) |
| 3 | 0z | ⊢ 0 ∈ ℤ | |
| 4 | eqidd | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) | |
| 5 | iftrue | ⊢ ( 𝑖 = 0 → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = ( I ↾ dom 𝐹 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑖 = 0 ) → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = ( I ↾ dom 𝐹 ) ) |
| 7 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 8 | 7 | a1i | ⊢ ( 𝐹 ∈ 𝑉 → 0 ∈ ℕ0 ) |
| 9 | dmexg | ⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) | |
| 10 | 9 | resiexd | ⊢ ( 𝐹 ∈ 𝑉 → ( I ↾ dom 𝐹 ) ∈ V ) |
| 11 | 4 6 8 10 | fvmptd | ⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |
| 12 | 3 11 | seq1i | ⊢ ( 𝐹 ∈ 𝑉 → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |
| 13 | 2 12 | eqtrd | ⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |