This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function iterated once. (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcoval1 | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( IterComp ‘ 𝐹 ) ‘ 1 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval | ⊢ ( 𝐹 ∈ 𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 1 ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 1 ) ) |
| 3 | 2 | adantl | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( IterComp ‘ 𝐹 ) ‘ 1 ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 1 ) ) |
| 4 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 5 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 6 | 5 | a1i | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → 0 ∈ ℕ0 ) |
| 7 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 8 | 1 | eqcomd | ⊢ ( 𝐹 ∈ 𝑉 → seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) = ( IterComp ‘ 𝐹 ) ) |
| 9 | 8 | fveq1d | ⊢ ( 𝐹 ∈ 𝑉 → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) = ( ( IterComp ‘ 𝐹 ) ‘ 0 ) ) |
| 10 | itcoval0 | ⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) | |
| 11 | 9 10 | eqtrd | ⊢ ( 𝐹 ∈ 𝑉 → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |
| 12 | 11 | adantl | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |
| 13 | eqidd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) | |
| 14 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 15 | 14 | neii | ⊢ ¬ 1 = 0 |
| 16 | eqeq1 | ⊢ ( 𝑖 = 1 → ( 𝑖 = 0 ↔ 1 = 0 ) ) | |
| 17 | 15 16 | mtbiri | ⊢ ( 𝑖 = 1 → ¬ 𝑖 = 0 ) |
| 18 | 17 | iffalsed | ⊢ ( 𝑖 = 1 → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = 𝐹 ) |
| 19 | 18 | adantl | ⊢ ( ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑖 = 1 ) → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = 𝐹 ) |
| 20 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 21 | 20 | a1i | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → 1 ∈ ℕ0 ) |
| 22 | simpr | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → 𝐹 ∈ 𝑉 ) | |
| 23 | 13 19 21 22 | fvmptd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ‘ 1 ) = 𝐹 ) |
| 24 | 4 6 7 12 23 | seqp1d | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 1 ) = ( ( I ↾ dom 𝐹 ) ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) ) |
| 25 | eqidd | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) = ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) ) | |
| 26 | coeq2 | ⊢ ( 𝑔 = ( I ↾ dom 𝐹 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( I ↾ dom 𝐹 ) ) ) | |
| 27 | 26 | ad2antrl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ ( 𝑔 = ( I ↾ dom 𝐹 ) ∧ 𝑗 = 𝐹 ) ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( I ↾ dom 𝐹 ) ) ) |
| 28 | dmexg | ⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) | |
| 29 | 28 | resiexd | ⊢ ( 𝐹 ∈ 𝑉 → ( I ↾ dom 𝐹 ) ∈ V ) |
| 30 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 31 | coexg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ ( I ↾ dom 𝐹 ) ∈ V ) → ( 𝐹 ∘ ( I ↾ dom 𝐹 ) ) ∈ V ) | |
| 32 | 29 31 | mpdan | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∘ ( I ↾ dom 𝐹 ) ) ∈ V ) |
| 33 | 25 27 29 30 32 | ovmpod | ⊢ ( 𝐹 ∈ 𝑉 → ( ( I ↾ dom 𝐹 ) ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) = ( 𝐹 ∘ ( I ↾ dom 𝐹 ) ) ) |
| 34 | 33 | adantl | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( I ↾ dom 𝐹 ) ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) = ( 𝐹 ∘ ( I ↾ dom 𝐹 ) ) ) |
| 35 | coires1 | ⊢ ( 𝐹 ∘ ( I ↾ dom 𝐹 ) ) = ( 𝐹 ↾ dom 𝐹 ) | |
| 36 | resdm | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) | |
| 37 | 36 | adantr | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) |
| 38 | 35 37 | eqtrid | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∘ ( I ↾ dom 𝐹 ) ) = 𝐹 ) |
| 39 | 34 38 | eqtrd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( I ↾ dom 𝐹 ) ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) = 𝐹 ) |
| 40 | 24 39 | eqtrd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 1 ) = 𝐹 ) |
| 41 | 3 40 | eqtrd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( IterComp ‘ 𝐹 ) ‘ 1 ) = 𝐹 ) |