This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function iterated once. (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcoval1 | |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval | |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) |
|
| 2 | 1 | fveq1d | |- ( F e. V -> ( ( IterComp ` F ) ` 1 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) ) |
| 3 | 2 | adantl | |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) ) |
| 4 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 5 | 0nn0 | |- 0 e. NN0 |
|
| 6 | 5 | a1i | |- ( ( Rel F /\ F e. V ) -> 0 e. NN0 ) |
| 7 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 8 | 1 | eqcomd | |- ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) = ( IterComp ` F ) ) |
| 9 | 8 | fveq1d | |- ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) = ( ( IterComp ` F ) ` 0 ) ) |
| 10 | itcoval0 | |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) |
|
| 11 | 9 10 | eqtrd | |- ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) = ( _I |` dom F ) ) |
| 12 | 11 | adantl | |- ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) = ( _I |` dom F ) ) |
| 13 | eqidd | |- ( ( Rel F /\ F e. V ) -> ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) = ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) |
|
| 14 | ax-1ne0 | |- 1 =/= 0 |
|
| 15 | 14 | neii | |- -. 1 = 0 |
| 16 | eqeq1 | |- ( i = 1 -> ( i = 0 <-> 1 = 0 ) ) |
|
| 17 | 15 16 | mtbiri | |- ( i = 1 -> -. i = 0 ) |
| 18 | 17 | iffalsed | |- ( i = 1 -> if ( i = 0 , ( _I |` dom F ) , F ) = F ) |
| 19 | 18 | adantl | |- ( ( ( Rel F /\ F e. V ) /\ i = 1 ) -> if ( i = 0 , ( _I |` dom F ) , F ) = F ) |
| 20 | 1nn0 | |- 1 e. NN0 |
|
| 21 | 20 | a1i | |- ( ( Rel F /\ F e. V ) -> 1 e. NN0 ) |
| 22 | simpr | |- ( ( Rel F /\ F e. V ) -> F e. V ) |
|
| 23 | 13 19 21 22 | fvmptd | |- ( ( Rel F /\ F e. V ) -> ( ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ` 1 ) = F ) |
| 24 | 4 6 7 12 23 | seqp1d | |- ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = ( ( _I |` dom F ) ( g e. _V , j e. _V |-> ( F o. g ) ) F ) ) |
| 25 | eqidd | |- ( F e. V -> ( g e. _V , j e. _V |-> ( F o. g ) ) = ( g e. _V , j e. _V |-> ( F o. g ) ) ) |
|
| 26 | coeq2 | |- ( g = ( _I |` dom F ) -> ( F o. g ) = ( F o. ( _I |` dom F ) ) ) |
|
| 27 | 26 | ad2antrl | |- ( ( F e. V /\ ( g = ( _I |` dom F ) /\ j = F ) ) -> ( F o. g ) = ( F o. ( _I |` dom F ) ) ) |
| 28 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
| 29 | 28 | resiexd | |- ( F e. V -> ( _I |` dom F ) e. _V ) |
| 30 | elex | |- ( F e. V -> F e. _V ) |
|
| 31 | coexg | |- ( ( F e. V /\ ( _I |` dom F ) e. _V ) -> ( F o. ( _I |` dom F ) ) e. _V ) |
|
| 32 | 29 31 | mpdan | |- ( F e. V -> ( F o. ( _I |` dom F ) ) e. _V ) |
| 33 | 25 27 29 30 32 | ovmpod | |- ( F e. V -> ( ( _I |` dom F ) ( g e. _V , j e. _V |-> ( F o. g ) ) F ) = ( F o. ( _I |` dom F ) ) ) |
| 34 | 33 | adantl | |- ( ( Rel F /\ F e. V ) -> ( ( _I |` dom F ) ( g e. _V , j e. _V |-> ( F o. g ) ) F ) = ( F o. ( _I |` dom F ) ) ) |
| 35 | coires1 | |- ( F o. ( _I |` dom F ) ) = ( F |` dom F ) |
|
| 36 | resdm | |- ( Rel F -> ( F |` dom F ) = F ) |
|
| 37 | 36 | adantr | |- ( ( Rel F /\ F e. V ) -> ( F |` dom F ) = F ) |
| 38 | 35 37 | eqtrid | |- ( ( Rel F /\ F e. V ) -> ( F o. ( _I |` dom F ) ) = F ) |
| 39 | 34 38 | eqtrd | |- ( ( Rel F /\ F e. V ) -> ( ( _I |` dom F ) ( g e. _V , j e. _V |-> ( F o. g ) ) F ) = F ) |
| 40 | 24 39 | eqtrd | |- ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = F ) |
| 41 | 3 40 | eqtrd | |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = F ) |