This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word over the set of vertices representing a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlks.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wwlks.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | iswwlks | ⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlks.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wwlks.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | neeq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ≠ ∅ ↔ 𝑊 ≠ ∅ ) ) | |
| 4 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 7 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 8 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) | |
| 9 | 7 8 | preq12d | ⊢ ( 𝑤 = 𝑊 → { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑤 = 𝑊 → ( { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ↔ { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 11 | 6 10 | raleqbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 12 | 3 11 | anbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ↔ ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 13 | 12 | elrab | ⊢ ( 𝑊 ∈ { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) } ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 14 | 1 2 | wwlks | ⊢ ( WWalks ‘ 𝐺 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) } |
| 15 | 14 | eleq2i | ⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ 𝑊 ∈ { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) } ) |
| 16 | 3anan12 | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) | |
| 17 | 13 15 16 | 3bitr4i | ⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |