This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 13-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iswrd | ⊢ ( 𝑊 ∈ Word 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word | ⊢ Word 𝑆 = { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } | |
| 2 | 1 | eleq2i | ⊢ ( 𝑊 ∈ Word 𝑆 ↔ 𝑊 ∈ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } ) |
| 3 | ovex | ⊢ ( 0 ..^ 𝑙 ) ∈ V | |
| 4 | fex | ⊢ ( ( 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ∧ ( 0 ..^ 𝑙 ) ∈ V ) → 𝑊 ∈ V ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 → 𝑊 ∈ V ) |
| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 → 𝑊 ∈ V ) |
| 7 | feq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 9 | 6 8 | elab3 | ⊢ ( 𝑊 ∈ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
| 10 | 2 9 | bitri | ⊢ ( 𝑊 ∈ Word 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |