This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 13-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iswrd | |- ( W e. Word S <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word | |- Word S = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } |
|
| 2 | 1 | eleq2i | |- ( W e. Word S <-> W e. { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } ) |
| 3 | ovex | |- ( 0 ..^ l ) e. _V |
|
| 4 | fex | |- ( ( W : ( 0 ..^ l ) --> S /\ ( 0 ..^ l ) e. _V ) -> W e. _V ) |
|
| 5 | 3 4 | mpan2 | |- ( W : ( 0 ..^ l ) --> S -> W e. _V ) |
| 6 | 5 | rexlimivw | |- ( E. l e. NN0 W : ( 0 ..^ l ) --> S -> W e. _V ) |
| 7 | feq1 | |- ( w = W -> ( w : ( 0 ..^ l ) --> S <-> W : ( 0 ..^ l ) --> S ) ) |
|
| 8 | 7 | rexbidv | |- ( w = W -> ( E. l e. NN0 w : ( 0 ..^ l ) --> S <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) ) |
| 9 | 6 8 | elab3 | |- ( W e. { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 10 | 2 9 | bitri | |- ( W e. Word S <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |